

Supplementary Figure S1. Inhibition of ISGF3-mediated transcription by GCs is dose- and timedependent. ВММФ were treated with $500 \mathrm{U} / \mathrm{mL}$ IFN $-/+100 \mathrm{nM}$ Dex for indicated times (A) or for 2 h with the indicated doses of IFN (B). (C) ВММФ were treated with IFN $\gamma /+100 \mathrm{nM}$ Dex for 2 h . mRNA expression of Type I IFN targets (A,B) or the IFN γ target, IRF1, (C) was assessed by qPCR with GAPDH as a normalization control and expressed relative to untreated cells (con=1).

Supplementary Figure S2. Dex-mediated suppression of ISG expression is independent of mRNA stability, processing, or new protein synthesis. (A) ВММФ were treated with $500 \mathrm{U} / \mathrm{mL}$ IFN -/+ 100 nM Dex for 2 h , and nascent transcripts were analyzed by qPCR as in Figure 1, using primers specific for intronic regions. (B) ВММФ were pretreated for 30 min with 20 $\mu \mathrm{g} / \mathrm{mL}$ CHX, followed by treatment with $500 \mathrm{U} / \mathrm{mL}$ IFN $-/+100 \mathrm{nM}$ Dex, as indicated, and mRNA levels of target genes were analyzed by qPCR, as in Figure 1. Error bars represent \pm SEM. Results are representative of at least three independent experiments.

Supplementary Figure S3. (A) IFN-induced STAT2 occupancy of ISREs is diminished by Dex co-treatment. ВММФ were treated as indicated for 30 min . ChIPs were performed using antibodies to STAT2 or isotype-matched control IgG. Occupancy was determined by qPCR amplification over ISRE regions of indicated target genes and expressed as in Figure 3. Error bars represent \pm SEM. Results are representative of three independent experiments. (B) GR is not recruited to ISG promoters. RAW264.7 cells were treated as indicated for 30 min . Occupancy of GR and Pol2, at the indicated regions of ISGs (left) and GILZ (right), was determined by ChIP, quantified by qPCR, and expressed as a percentage of total DNA input.

Supplementary Figure S4. GRIP1 constitutively associates with IRF9 in mouse fibroblasts. 3T3 fibroblasts were treated as shown for 1 h and lysates were prepared. 20% of each lysate was boiled in sample buffer to generate WCE, whereas the rest was precipitated with anti-GRIP1 antibody (α GRIP1 IP). Protein complexes were collected on protein A/G PLUS agarose beads, boiled in sample buffer and separated by SDS-PAGE along with WCE. GRIP1 and IRF9 were detected by immunoblotting.

Supplementary Table S1. qPCR primers used in the study

IP10-ChIP-ISRE	F:5’-ATTCTGCAAGGCACTCATCTGATT-3’ R:5’-GTGACCCATGAACTTGGAATTTC-3’
	F:5'-GGAGCCTTGCTGAGTCATCTCC-3'
IP10-ChIP-TSS	R:5'-GGCAGCACTTGGGTTCATGGTGC-3'
	F:5'-CTGCAACTGCATCCATATCG-3'
IP10 exon	R:5'-CAATGATCTCAACACGTGGG-3'
	F:5'-ACACAGACACTGAGGTGCCTTCTT-3'
IP10 intron	R:5'-CATTTGGCAGCTTTACCCGTGACA-3'
	F:5'-GGTTACAGCTTTGACCCTTGAGAGC-3'
ISG15-ChIP-ISRE	R:5’-CGGAGTTTCCAGAAACCAGAGCTA-3'
	F:5’-CCGCCTCTTCACACCCACAGC-3'
ISG15-ChIP-TSS	R:5'-CTCTAGGTCCCCTGGAATTAAGGAG-3'
	F:5'-CAGGACGGTCTTACCCTTTCC-3'
ISG15 exon	R:5'-AGGCTCGCTGCAGTTCTGTAC-3'
	F: 5'- СTCTCCTCTATTAGGGGAACCATCCA-3'
ISG15 intron	R:5’-AGTTCAGGCCAAGTAGCTCGATGC-3'
	F:5'-TCAGTGGAGAATGCAGTAGGGCAA-3'
ISG56-ChIP-ISRE	R:5’-ACTGTCACACCAACTGGAAGCTCA-3'
	F:5'-TGAGCTTCCAGTTGGTGTGACAGT-3'
ISG56-ChIP-TSS	R:5'-CCTTACCCCATGGTTGCTGTAAAGG-3'
	F:5'-TGCTTTGCGAAGGCTCTGAAAGTG-3'
ISG56 exon	R:5'-TGGATTTAACCGGACAGCCTTCCT-3'
	F:5'-GTCATTGTATAATCTATTCCACATCCAGG-3'
CXCL9-ChIP-ISRE	R:5'-СТАСТСТСАGATCCCAGGGAATTTC-3'
	F:5'-TCAGCTGAGGAGACCAGCCAATC-3'
CXCL9-ChIP-TSS	R:5'-GGACTTCATGGCAGAGCTGAGTTC-3'
	F:5'-CCTTTCCTTCATAGCTATCCAATGCAC-3'
CXCL9 exon	R:5'-CTCTCCAGCTTGGTGAGGTCTATC-3'
	F:5'-CGTAGGTACCATCTGAGAGTGTAGG-3'
CXCL9 intron	R:5’-CCCAGACAACTGACAAGTATGGC-3'
	F:5'-GTGGCTTCTTAACTCCAGCAGAGG-3'
CXCL11-ChIP-ISRE	R:5'-CCAGCAATCTTCAGGCAGTATCAGG-3'
	F:5'-GAGAGATCTCCAAAGCCCAGGC-3'
CXCL11-ChIP-TSS	R:5'-CAGACTCAGAAGCTACGGGCAC-3'
	F:5'-ATGTGACATCCTGGGAACGTCTGAC-3'
CXCL11 exon	R:5'-GTTCTGCAGCCTGGTAATACGTGG-3'
	F:5'-TCACCAGCGACTGTGAAAGACGC-3'
CXCL11 intron	R:5'-AGTATGAGTATGCTATGAGACCGGC-3'
	F:5'-GCCCACCCCTCCTCACAGTC-3'
ISG54 exon	R:5'-TATCACATGGGCCAGTTCTCAAAG-3'
	F:5'-AGTTCAGGCCAAGTAGCTCGATGC-3'
ISG54 intron	R:5'-GTTCTTCAACCTTGAACACTAACTCС-3'
	F:5'-GCCATTGCACGCTCGCCTACTAC-3'
OASL1 exon	R:5'-CTCCTGCCATCCGGGTTTTTCA-3'
	F:5'-AGGCTGAGAGTAGCCATTGGGCT-3'
OASL1 intron	R:5'-GAGAAACTTGGGTACCGTTTGAGTAG-3'
	F:5'-ATGAAGTTCCTCTCTGCAAGAGACT-3'
IL6 exon	R:5'-CACTAGGTTTGCCGAGTAGATCTC-3'
	F:5'-AAACCTGATCCGACTTCACTTCC-3'
Mx1 exon	R:5’-TGATCGTCTTCAAGGTTTCCTTGT-3'
	F:5'-CTGTCTACTGTAGGTGGAAGCATAGC-3'
Mx1 intron	R:5’-CTGCCTCATTTAAAGGTCAGGGTCC-3'
	F:5'-GCCCCACGTCAAGGAGTATTTCTA-3'
RANTES exon	R:5'-ACACACTTGGCGGTTCCTTC-3'
	F:5'-CATATGTAGGAAAGCAGAGGGCAC-3'
RANTES intron	R:5'-GACAATAGTACACGGTGTGGGTG-3'
	F:5'-TGCTGCCAAAGTCCATGGTGAATG-3'
GRIP1	R:5'-ATCGCCTCGTATTTCTGATGGGCT-3'
	F:5'-AGGTGTGCACTTTTATTGGTCTCAA-3'
Actin	R:5’-TGTATGAAGGCTTTGGTCTCCCT-3'
	F:5'-ACGACCCCTTCATTGACC-3'
GAPDH	R:5'-AGACACCAGTAGACTCCACG-3'
	F:5'-GATCCTTCGATGTCGGCTCTTCCTATC-3'
28S-ChIP	R:5'-AGGGTAAAACTAACCTGTCTCACG-3'
	F: 5'-GGGACAGTGATTCACCCAACTCAG-3'
GILZ-ChIP-GRE	R: 5’-TTTCTCTTGGCCTGTTGGTCCTGC-3’

